Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1994 Printed in Austria

Selective Aziridination of Olefinic Esters

M. Deshmukh^{1,*}, P. Chavan², and D. Kharade²

¹ Institute for Organic Chemistry, Karl-Franzens University, A-8010 Graz, Austria

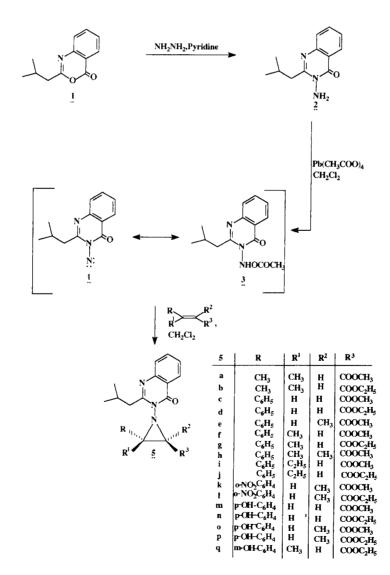
² Department of Chemistry, Shivaji University, Kolhapur-416004, India

Summary. Oxidation of 3-amino-2-isobutylquinazoline-4-one (2) with lead tetraacetate at -20 °C gave N-acetoxyamino-2-isobutylquinazolin-4-one (3), which selectively aziridinated olefinic esters to yield substituted 1-(2'-isobutylquinazolin-4'-one-3'-yl)-aziridine-2-carboxylates 5a-q.

Keywords. Aziridine; Quinazolinone; Olefinic esters.

Selektive Aziridinierung von olefinischen Estern

Zusammenfassung. Oxidation von 3-Amino-2-isobutylchinazolin-4-on (2) mit Bleitetraacetat bei -20 °C ergab N-Acetoxyamino-2-isobutylchinazolin-4-on (3), welches mit verschiedenen olefinischen Estern selektiv substituierte 1-(2'-Isobutylchinazolin-4'-on-3'-yl)-aziridin-2-carbonsäureester 5a-q lieferte.


Introduction

Aziridines possess useful biological activities which chemically modify DNA [1]. These properties have been investigated for potential antitumor [2] and insect chemosterilant [3] activities. Recently, the immunomodulating [4–6] and immunostimulant tumor suppressant properties [7] of aziridines have been reported. The development of a new method for aziridination of olefins is of great interest. Aziridination of alkenes has been carried out using different reagents [8]. However, the addition of nitrene to alkene cannot be counted as a reliable method for aziridination because of the highly reactive and unselective behaviour of nitrenes which usually leads to a mixture of products. The exception to this behaviour is a family of N-nitrene compounds derived by the oxidation of the corresponding N-amino compounds with lead tetraacetate [9–12]. The oxidation of N-amino-2-isobutyl quinazoline-4-one (3) which in turn is used for the selective aziridination of olefinic esters.

Results and Discussion

The reaction of N-acetoxy-2-isobutylquinazoline-4-one (3) formed by oxidation of N-amino-2-isobutylquinazoline-4-one (2) with lead tetraacetate in dry methylene

chloride at -20 °C with olefinic esters gave 5 in 60–75% yield. The reaction of 3 with olefinic esters has been observed to be stereospecific [9–11]. The above aziridination reaction was found to be 90% stereoselective independent of *cis*- or *trans*-configuration of the olefin. We therefore propose compound 3 to be the reactive species and not the N-nitrene 4. Tentative assignment of ¹H NMR signals of aziridines is based on the likely preferred conformation of the aziridine. Methyl 1-(2'-isobutylquinazole-4'-one-3'-yl)-3-methyl aziridine 2-carboxylate (5a) is not observed to be a single compound but a mixture of its invertomers in the proportion 9:1, which can be confirmed by the ¹H NMR data. The ester methyl protons are observed as two singlets, one at $\delta = 3.85$ ppm and the other at $\delta = 3.79$ ppm in the ratio 9:1. The signal at 3.85 ppm is assigned to the less sterically hindered major invertomer [12]. The greater selectivity in the aziridination of the olefinic esters can be rationalized assuming steric interactions in the transition state by the 2-isobutyl substituent in 3 which prevents the rotation around the N–N single bond.

Experimental

Proton magnetic resonance spectra were determined in $CDCl_3$ with TMS as an internal standard with a Perkin–Elmer R-32 90 MHz spectrometer. IR spectra were recorded on Shimadzu IR-437 spectrometer. Column chromatography was performed using E. Merck silica gel-G (100–200 μ particle size). Dichloromethane was distilled from calcium hydride prior to use.

2-Isobutyl 3,1,4-benzoxazinone (1) was prepared according to the literature [13].

2-Isobutyl-3-aminoquinazole-4-one (2)

A mixture of 1 (20.3 g, 0.1 mol) and hydrazine hydrate (5 ml, 0.1 mol) in pyridine (25 ml) was refluxed for 6 h. Pyridine was distilled off under reduced pressure. The syrupy mass was digested with 1N HCl (100 ml) for 2 h on a steam bath and the resulting semisolid was treated with distilled water (100 ml). The separated solid was filtered off, dried and recrystallized from ethanol to give 2 (18 g, 83%).

IR (KBr): $v(\text{cm}^{-1}) = 3300$, 1680; ¹H NMR (CDCl₃): $\delta(\text{ppm}) = 1.1$ (d, J = 7.5 Hz, 6H), 2.1 (d, J = 7.5 Hz, CH₂), 3.2 (m, -CH), 4.5 (s, NH), 6.5–7.5 (m, 5H, arom); C₁₂H₁₅N₃O (217.3); calc.: C 66.26, H 6.90, N 19.32; found: C 66.15, H 6.75, N 19.20.

General procedure for the preparation of the aziridines 5a-q

Lead tetraacetate (227 mg, 100 mmol) was added to a suspension of 2 (217 mg, 100 mmol) in dry dichloromethane (5 ml) at -20° C. The reaction mixture was stirred for 15 min. 100 mmol of the olefinic ester was added with stirring and the reaction mixture was allowed to warm up to 25 °C. The insoluble material was filtered off and the filtrate was washed successively with saturated sodium hydrogen carbonate solution (5 ml) and water (2 × 5 ml). The solution was dried and the solvent was removed under reduced pressure. The residue was purified by column chromatography using ethyl acetate – hexane (30:70) as eluent to furnish 5. For yields and melting points, see Table 1.

Compound	Yield (%)	M.p. (°C)	Molecular formula	Molecular weight
5b	65	120	$C_{19}H_{25}N_{3}O_{3}$	343.4
5c	62	145	$C_{22}H_{23}N_{3}O_{3}$	377.4
5d	68	111	$C_{23}H_{23}N_{3}O_{3}$	391.5
5e	65	102	C ₂₃ H ₂₅ N ₃ O ₃	391.5
5f	71	75	$C_{23}H_{25}N_{3}O_{3}$	391.5
5g	62	65	$C_{24}H_{27}N_{3}O_{3}$	405.5
5h	59	90	$C_{24}H_{27}N_{3}O_{3}$	405.5
5i	64	80	$C_{24}H_{27}N_{3}O_{3}$	419.5
5j	72	132	$C_{25}H_{29}N_3O_3$	419.5
5k	62	118	$C_{23}H_{24}N_4O_5$	436.5
51	65	131	$C_{24}H_{25}N_4O_5$	450.5
5m	58	63	$C_{22}H_{23}N_{3}O_{4}$	393.4
5n	67	95	$C_{23}H_{25}N_{3}O_{4}$	407.5
50	61	119	$C_{23}H_{25}N_{3}O_{4}$	407.5
5p	69	96	$C_{24}H_{27}N_{3}O_{4}$	421.5
5q	63	73	$C_{24}H_{27}N_{3}O_{3}$	421.5

Table 1. Yields and melting points of aziridines 5a-q. All compounds gave satisfying elemental analyses

Acknowledgements

We thank the CSIR, New Delhi, India for financial support, and Prof. Junek and Prof. Mittelbach, Institute of Organic Chemistry, Univ. of Graz, Austria, for useful suggestions.

References

- Dermer O. C., Han G. E. (1964) Ethylamine and Other Aziridines. Academic Press, New York, p 394
- [2] Akhtar M. H., Begielter A., Johnson D., Lawn J. W., MacLaughlin J., Sim S. K. (1975) Can. J. Chem. 53: 2891
- [3] Hynes J. W., Matrix E., Miltin W., Brokovec A. B., Lindia O. H. (1976) U.S. Agri. Res. Ser. South Reg. (Rep.), 30; cit. (1976) C:A: 85:138594h
- [4] Brokovec A. B., Woods C. W. Jr. (1976) J. Entamol. 11: 53
- [5] Ardenno V. M., Reitnauer P. G. (1977) Arz. 27: 1701
- [6] Beicker U. (1967) Forsch. Med. 96: 661
- [7] Mannbeon B. G. Belg. Pat. No. 843803, 1976; cit. (1977) C.A. 87:194233
- [8] Hassner A. (1983) Small Ring Heterocycles, Part-I. Wiley, New York
- [9] Atkinson R. S. (1984) Azides and Nitrenes, Chapter-V.E.I.G. Scriven, New York
- [10] Atkinson R. S., Kelly B. (1987) Chem. Commun. 1362
- [11] Atkinson R. S., Kelly B. (1984) Chem. Commun. 624
- [12] Hogale (Deshmukh) M. B., Shelar A. R., Chavan P. B. (1992) Indian J. Chem. 31B: 456; Hogale (Deshmukh) M. B., Chavan, P. B. (1993) Indian J. Chem. 32B: 581
- [13] Wheeler O. C., Octs W. M. (1910) J. Am. Chem. Soc. 33: 770

Received October 20, 1993. Accepted December 18, 1993